

93% of waste in lowincome countries goes to uncontrolled dumping

source: World bank, What a Waste 2.0

AGENCE DE

Waste in low-income countries contains 50 to 80% organic waste

Mismanaged organic waste emits :

20% of global methane

Source: Global Methane Hub

*to reduce short term global warming than reducing CO₂ emissions

ADEME

TRANSITION

Restaurant food waste recovery

Reducing sanitary health risks, promoting waste to energy

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT/ METHANE REDUCTION

Diverting restaurant food waste from animal farms use, through dedicated collection and treatment systems:

- Introduction of a dedicated collection system for restaurant food waste
- · Collection and pre-treatment of used food oils
- Anaerobic digestion facility producing biogas for heat and power co-generation
- Financial viability of the operations through:
 - Waste collection tax
 - Sales of oil, electricity and heat

FOCUS | La gestion des déchets solides | AFD - Agence Française de Développement

CLIMATE BENEFIT:
> 70 kTonCO₂eq/y avoided compared to former situation (methane emissions from biowaste)

> Green energy production

CO-BENEFIT:

- > Reducing major public health risks through proper management of biowaste
- > 174 jobs created

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FSV

WASTE TO RESOURCES

FRANCE – Greater Paris

Organic waste recovery

Supporting local authorities to sort, collect and treat domestic food waste

Mandatory source separation of organic waste as of January 2024:

- Collection schemes : on-site composting, door to door collection, voluntary deposit
- Targeting 100 kTon/year of biowaste collected in the service area
- Construction of a methanizer on the river port of Gennevilliers by 2026 to produce biomethane and organic fertilizers

CLIMATE BENEFIT:

- > Biogas production
- > Organic fertilizer use, to avoid
 GHG emissions from chemical
 fertilizer production

CO-BENEFIT:

 Citizens' awareness on reducing food waste and recovering the value of waste

Partenariat

les déchets

PFC

French

solid waste partnership

français pour

FSV

 Plan Biodéchets : améliorer le tri et la valorisation des déchets alimentaires -Syctom (syctom-paris.fr)

FRANCE - Paris

CoMétha Pyrogazification Project

A disruptive technology opposing incineration and complementary with methanization

MAXIMISE THE PRODUCTION OF BIOGAS THE PRODUCTION OF BIOGAS

From R&D to a full-scale pilot

- Treat a mix of organic waste, including food waste and sewage sludge
- Maximize the transformation of organic matter into syngas
- Minimize the volume of solid residues (ashes)
- Recover nutrients (nitrogen and phosphorus)

CLIMATE BENEFIT:

- > Renewable energy production
- Phosphorus recovery, to avoid
 GHG emissions from phosphorus
 mining

CO-BENEFIT:

- > Synergies between organic waste producers
- > New type of contracting models to support innovation
- > Nutrient recovery

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FS

Cométha (cometha.fr)

CARBON SINK

suez

CANADA - Quebec

Biochar to regenerate soil health

Pyrolysis conversion of unused biomass into biochar and bioenergy

Biochar application in soil stores carbon while improving soil health and productivity. The first of its kind plant is set up in Quebec:

- Phase 1: 10 kT biochar/y by end 2024
- Phase 2: ramp-up capacity up to 30 kT biochar/y

SUEZ has the ambition to sequester 800 kTon CO_2 eq/y by 2035.

CLIMATE BENEFIT:

- > 1 ton of biochar produced
- ~ 2.7 ton of net CO_2 sequestered
- > Green energy production
 ~ 50 GWh/y of bioenergy surplus for a 20kt/y biochar plant
 CO-BENEFIT:
- > Regenerate soil biodiversity and productivity
- > Improve and sustain soil health

Partenariat

les déchets

PFC

French

solid waste

partnership

français pour

FS\

Carbonity - Décarboner grâce au pouvoir du biochar

* with high variability between geographic zones.

PAPREC

Source: What a waste, World Bank

ADEME

TRANSITION

COP78

Waste sector = 5% of global emissions in 2016 (1.6 Billion Tons CO_{2eq}/year)

Business as Usual = 2.6 Billion Tons CO_{2eq}/year by 2050

Source : AFD – training material.

#1 - Reduce waste volumes*

* reduces emissions associated to production of goods, transport and treatment

2 - Improve waste collection to reduce flooding risks* & pollution

* prevents drainage blockages

3 - Improve waste collection routes to reduce transport emissions

4 – Reuse* and recycle**

*reduces production of goods **low-carbon raw materials

VEOLIA

5 – Transition* to engineered landfills with methane recovery

* Rehabilitate dumpsites and controlled landfills

6 – Recover* the energy from waste

*while avoiding methane leakage

WASTE TO RESOURCES

Recycled PET production

France Plastique Recyclage

Production of recycled plastic (rPET) as a substitute for primary PET

- 45,000 t/year of PET bottles from selective collection processed
- 41.000 t/year rPET produced

> rPET generates 70% less CO_2 than primary PET

> 50 kTon CO₂eq avoided by 2022 by using rPET in place of primary PET

CO-BENEFIT:

CLIMATE BENEFIT:

> Increases the sustainability of the bottled water industry.

Partenariat

les déchets

PFC

French

solid waste partnership

français pour

FS

France Plastiques Recyclage : dernière ligne droite pour les travaux d'extrusion - Paprec

WASTE TO ENERGY/ METHANE REDUCTION

AN INTERNATIONAL MODEL

Green landfill to energy

Integrated infrastructure to replace dumpsites

An innovative financing model for waste treatment in developing economies

- Produce biomethane, produce electricity
- Improve waste management from open dumpsites to environmentally controlled landfills
- The case of Meknes, Morocco:
 - 200 kTon/ y of waste safely managed
 - 70% reduction in emissions by 2033
 - 5,500 MWh/y production capacity

A waste recovery centre in Meknès combines the fight against global warming with social innovation - SUEZ Group

CLIMATE BENEFIT:

- > Methane capture
- > Production of renewable energy

CO-BENEFIT:

- > Land value enhancement
- > Reduced pollution through leachate treatment
- > Improved energy autonomy

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FS

WASTE TO ENERGY/ METHANE REDUCTION

AMERICA

WAGABOX[®] technology

A benchmark solution for landfill gas purification for recovery

Coupling membrane filtration and cryogenic distillation to upgrade landfill gas into grid compliant biomethane

- Improvement in energy yield compared with cogeneration
- Optimized methane capture as there is no limitation in air concentration in landfill gas
- Example: WAGABOX® in Claye-Souilly, France
 - Capacity: 130 GWh/y
 - 21,000 kg CO2eq avoided/y
 - 20,000 households supplied with biomethane
- Technologie Waga Energy (waga-energy.com)

CLIMATE BENEFIT:

- > 142 kTon CO₂eq avoided (since 2017) compared to former landfill operation scenario
- > Green fuel for transport and industry
- > Methane emissions reduction CO-BENEFIT:
- > Improving landfill operation

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FS

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT

OMAN - Muscat

Barka Landfill

Partenariat français pour les déchets PFD French solid waste partnership

A landmark of the Omani journey from open dumpsites to 100% controlled solid waste treatment

2,500 t/day are highly compacted and readily covered with soil to reduce emissions

- Biogas is recovered; the installation of a gas engine is in planning; the capture of biogas from open cells is evaluated
- Leachate is treated; the permeate reused to cover the landfill operation needs; no discharge
- Tyres are processed in chips to fuel a nearby cement plant

CLIMATE BENEFIT:

- > Methane emissions are significantly reduced
- > Green energy from biogas about to be harnessed

CO-BENEFIT:

- > More than 1M people benefit of an improved environment
- > Water and soil pollution from open dumps is avoided
- > Multiple use of fossil carbon: from tyres to energy

Non-recyclable waste into green energy

Heat and power production as an alternative to landfilling

WASTE & CLIMATE CHANGE

> WASTE TO ENERGY

FRANCE - Sète

The Sète waste-to-energy plant:

 55,000 t/y of non-recyclable waste processed in an 18.1 MW oscillating furnace to produce

- 15.7 GWh of electricity
- o 23 GW of steam

> Energy production

CO-BENEFIT: Energy autonomy :

- > Produces electricity for 4,000 to 6,000 households
- > Produces steam for an oil seed industry

Partenariat français pour

les déchets

FS

PFC

French

solid waste

partnership

L'éco-centre Ikos Fresnoy-Folny, pionnier de la méthanisation (paprec.com)

MASSBIO₂ the CO2 Dashboard

Assessing biogenic and fossil carbon fractions in incineration flue gas, waste and energy

WASTE & CLIMATE CHANGE

> WASTE TO ENERGY

FRANCE - 11 locations

From flue gas to waste composition... by measuring the origin of CO_2 (¹⁴C analysis) An algorithm assesses biogenic and fossil CO_2 , the waste composition, and the renewable energy fraction.

Nos innovations -R&D | Groupe Merlin (cabinet-merlin.fr)

CLIMATE BENEFIT:

> Measure CO₂ emissions to understand waste composition and identify levers driving mitigation actions.

CO-BENEFIT:

- > Citizens and decision-makers awareness to reduce waste production
- > Metrics on waste composition to drive action

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FSV

WASTE TO ENERGY

TÜRKIYE- Istanbul

EOLIA

Istanbul Metropolitan Municipality - İSTAÇ A.Ş

Treatment capacity of 1.1 M/t waste per year

- Europe's largest waste to energy facility
- Electricity production by an 85 MW turbine = meets the needs of 1.4 million inhabitants
- Objective of carbon neutrality by 2053

Décarbonation: Veolia devient l'opérateur du 1er site de production
 d'énergies à partir de déchets de Turquie | Veolia

 CLIMATE BENEFIT:
 > 1,4 M Ton CO₂eq/y of carbon emissions are reduced (through reduced landfilling and transportation)

> Green electricity production

CO-BENEFIT:

- > Improve the environment for citizens
- > Improved energy autonomy

Partenariat

WASTE TO RESOURCES

United Arab Emirates-Abu Dhabi

Oil & Gas Waste Recovery

The ecological transformation of the oil industry in the Middle East

Hazardous waste treatment at Al Ruways: the largest oil refinery in the Middle East

- Maximize resource recovery (water and oil) from oil and gas industrial waste, for reuse on nearby OpCo's (ADNOC Operational subsidiaries) industrial sites (recovery and reuse of petroleum resources).
- Increase the green energy production capacity through an upcoming solar power plant
- Magma Corporate presentation

CLIMATE BENEFIT:> Reduced consumption of petroleum raw materials

Partenariat

les déchets

PF

French

solid waste partnership

COP?

français pour

FS

> Promoting a green economy

CO-BENEFIT:

- > Reducing the environmental impact of industrial activities
- > Meet people's energy needs

Geothermal CO₂ capture

Leveraging CO₂ dissolution capacity in cold versus hot water

WASTE & CLIMATE CHANGE

CARBON SINK

R&D project to combine a deep geothermal plant with permanent CO_2 storage of incineration flue gases.

The project aims to:

- Store 300,000 tons of CO₂(40% fossil) in a deep aquifer
- Recover heat from the geothermal aquifer to supply district heating
- Reduce the amount of the future European tax on waste-to-energy emissions.

CLIMATE BENEFIT:

- > 300 kTon CO_2 to be captured
- Harnessing renewable energy (heat)

CO-BENEFIT:

- > Research partnership
- > Innovation can benefit others

Partenariat

les déchets

PFC

French

solid waste partnership

français pour

FS\

> WASTE TO ENERGY

Black pellets from wood waste as a substitute for coal

Wood waste conversion into black pellets to fuel the Cordemais coal-fired power plant

 Transformation of wood waste by steam cracking to produce 160,000 t of black pellets/year as an alternative fuel to coal.

• The plant uses 250,000 t/year of B-wood and 40,000 t/year of Solid Recovered Fuels.

CLIMATE BENEFIT:

- 6 million Ton CO₂eq avoided over
 20 years compared to fossil fuel
- Fossil fuel substitution by renewable energy

CO-BENEFIT:

- > Energy autonomy
- > Existing coal-fired power plant infrastructure can be leveraged to produce green energy

Partenariat

les déchets

PF

French

solid waste partnership

français pour

FS

Success factors to gradually improve a holistic, locally adapted waste management...

Success Factors for holistic waste management:

1 – Decision making capacity through a governance framework

Success Factors for holistic waste management: # 2 – A dedicated fiscal environment*

*that allows the financing of prevention, eco-conception, collection and treatment

Success Factors for holistic waste management: # 3 – Adequate financial and human resources for local authorities in charge* of waste

*with the necessary leeway to experiment with solutions

Success Factors for holistic waste management:

4 – A legal framework that clearly defines roles and responsibilities*

*for all stakeholders' regarding prevention, collection and treatment.

Success Factors for holistic waste management:

5 – Regulation* and control* of waste management activities

* By independent and public authorities

Success Factors for waste management solutions:

#1 – Systemic approaches

Success Factors for waste management solutions:

2 – co-construction* with the local authorities & population

*acknowledging the local context and capacities

Success Factors for waste management solutions:

#3-clear & ambitious targets for

- prevention
- collection
- treatment
- resource recovery

> WASTE TO RESOURCES

FRANCE - Tarn

A waste to resources industrial system

A systemic approach to reduce landfilling, recycle materials, and produce energy

A municipal solid waste plant to valorize 80% of waste into new raw materials, solid fuels and biomethane

- Materials Balance : for 100,000 t/y of waste
 - Biomethane = 62 GWh/y
 - New raw materials = 6,000 t/y
 - Fertilising products = 12,000 t/y
 - Refuse Derived Fuel (RDF) = 150 GWh/y

CLIMATE BENEFIT:

> 23 % reduction of CO₂eq emissions compared to baseline

CO-BENEFIT:

- Increased income allows to stabilise waste treatment cost
- > Landfill diversion
- Scalable and adaptable to various waste streams & energy needs

Partenariat français pour

les déchets

FSV

PFC

French

solid waste partnership

→ Un projet d'économie circulaire | Trifyl

Improving household waste management

Towards a sustainable urban transition in Lomé

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT

TOGO - Lomé

Holistic domestic waste management system in the Grand Lomé: 1.8M people, 300 kTon/y of solid waste.

An ongoing multitranch project since 2006:

- Improvement of the holistic solid waste management system and capacity building support
- Implementation of engineered landfills with long term biogas and leachate management
- Strengthening recovery & recycling initiatives,
- Improvement of the sector financial resources
- Gradual increase of performance requirements

FOCUS | La gestion des déchets solides | AFD - Agence Française de Développement

> Reduced GHG emissions through improved collection and landfill operation conditions

CO-BENEFIT:

- > Improved hygiene
- > Reduced pollution and drainage blockages causing chronic flooding
- > Capacity building

Partenariat français pour

les déchets

FS

PF

French

solid waste partnership

A women-led informal waste collection system in Hà Nôi

Waste collection and recycling in a city overwhelmed by waste

WASTE FOR ALL SDG

> BEHAVORIAL SCIENCE

VIÊT NAM - Hà Nôi

Main highlights of this comprehensive study :

- 20% of urban waste is collected informally, mainly by women
- The informal sector is complex and composed of street collectors, waste deposit managers and recyclers
- Recycling practices are highly polluting for the environment and health

CLIMATE BENEFIT:

Baselines for future policy development to

> Reduce the pollution and emissions by improving the recycling techniques

CO-BENEFIT:

Baselines for future policy development to

- > Improve working conditions of women collectors
- > Recognize and support the informal recycling system

 <u>Collecter et recycler les déchets à Hà Nôi - Acteurs, territoires et matériaux -</u> (EAN13 : 9782709929660) | Un éditeur pour le développement (ird.fr)

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT

BOLIVIA - El Alto & La Paz

Open-burning & Air quality

El Alto and La Paz – evaluation of airborne particle pollution sources

This evaluation of airborne particle pollution sources in Bolivia show that:

- Local air pollution in La Paz is mainly due to road traffic but additional sources such as waste burning may have non-negligeable impacts
- Waste burning contributes only 2 to 5 % of total PM10 but contains more than 50 % of the PAHs content which are carcinogenic components

➡ Mardoñez, V. et al.: Source apportionment study on particulate air pollution in two high-altitude Bolivian cities: La Paz and El Alto, Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, 2023.

CLIMATE BENEFIT: Baselines for future policy development to

> Reduce the emissions of black carbon

CO-BENEFIT:

Baselines for future policy development to

- > Improve air quality for citizens
- > Protect people's health

Partenariat

les déchets

PFC

French

solid waste partnership

français pour

FSV

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT

South Pacific

Strengthening national policies

Waste management and sustainable financing in insular territories

- Support local authorities in drawing up comprehensive waste management policies
- Strengthen their capacity for action

A regional initiative

leveraging the

between insular

(plastic), used oil,

post-disaster waste

from degrading the

marine debris

environment :

cooperation

- Improve existing infrastructures by setting up pilot projects
- Promoting sustainable financing

FOCUS | La gestion des déchets solides | AFD - Agence Francaise de **Développement**

CLIMATE BENEFIT:

- > Reduced GHG emissions from improved waste collection and treatment
- > Reducing drainage blockages and associated flood risks

CO-BENEFIT:

- > Protecting ecosystems
- > 200,000 people with improved access to essential public services
- > Job creation

Partenariat

français pour

Promoting integrated solid waste management in Senegal

WASTE FOR ALL SDG

HOLISTIC WASTE MANAGEMENT/ BEHAVORIAL SCIENCE

Provide integrated solutions throughout the sector serving 6M people (2020-2026)

- Improve the regulatory, financial and fiscal framework of the sector
- Develop partnerships between the public authorities and private sector
- Rehabilitation of the Mbeubeuss Dakar dumpsite integrating the informal sector
- Foster a holistic waste management system

FOCUS | La gestion des déchets solides | AFD - Agence Française de Développement

CLIMATE BENEFIT:

- > 542 kTon CO₂eq/y avoided compared to the uncontrolled dumpsite
- > Reducing drainage blockages and associated flood risks

CO-BENEFIT:

- > 6 million people with improved quality of life
- > Reducing pollution
- > Job creation

Waste sector = 5% of global emissions in 2016 (1.6 Billion Tons CO_{2eq}/year)

Business as Usual = 2.6 Billion Tons CO_{2eq}/year by 2050

Source : AFD – training material.

Waste to energy (incineration)

~380 kg CO_{2eq}/t of waste (from fossil-based products)

42%

58%

Source : https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4007determination-des-contenus-biogene-et-fossile-des-ordures-menageres-residuelles-et-dun-csr-a-partir-d-une-analyse-14c-du-co2-des-gaz-de-post-combustion.html

Case of France

Waste to energy (incineration)

~ 0.3 MWh/ ton of waste 45% electricity 55% heat

~ 140 kg CO_{2eq} /MWh* Emitted

* Scope 1 & 2 emissions only, fossil emissions only.

Source : https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4007determination-des-contenus-biogene-et-fossile-des-ordures-menageres-residuelles-et-dun-csr-a-partir-d-une-analyse-14c-du-co2-des-gaz-de-post-combustion.html ~ 180 kg CO_{2eq}/ MWh** Avoided

** Compared to the use of the French energy mix

Biowaste methanization

~ **1.1** MWh PCS biomethane / T biowaste

~ 45 kg co_{2eq}/MWh* Emitted

*Scope 1 & 2 of the energy production process only.

Source: https://projet-methanisation.grdf.fr/actualites/les-analyse-de-cycle-devie-confirment-limpact-positif-de-la-filiere-biomethane-sur-la-reduction-desemissions-de-gaz-a-effet-de-serre ~ 240 CO_{2eq} /MWh ** Avoided

** Compared to the use of the French mix of natural gas

Biogas Recovery from Engineered Landfills

Operational	
practices:	

Good

Bad

Biomethane /t waste over the lifespan of the waste ~ 0.78 MWh/t*

~ 0.42 MWh/t*

CO_{2eq} emitted /t waste over the lifespan of the waste

> 900 kg CO_{2eq}/t *

By 2025 in France, landfill biomethane will contribute 6 TWh of renewable natural gas

* based on the French landfilled waste mix, accounting for organic fraction reduction trends as per EU Directive

Biogas recovery from Engineered Landfills

Case of France

* based on the French landfilled waste mix, accounting for organic fraction reduction trends as per EU Directive

Biogas recovery from Engineered Landfills

Poor Practices

- No capture during operation
- Delay in implementing the capture system post operation
 - Semi-permeable cover
 - No bioreactor
 - Poor monitoring & maintenance
 - Flaring all the biogas

Leakages*
 *non-optimized treatment of residual CH₄
 & non-preservation of cover integrity

Abatement of >600 kg CO_{2eq}/t of waste

Good Practices

- Capture during operation* *temporary cover
 - Impermeable cover
- Bioreactor with >60% waste kept humid
- Frequent monitoring & maintenance
 - Energy valorisation of biogas
 - Minimized leakages* *optimized treatment of residual CH₄ & preservation of cover integrity