This study leverages the experience of key stakeholders in the European landfilling, assesses the efficacy of ‘best-in-class’ landfill installations, evaluates their potential impact on GHG reduction, and offers concrete recommendations for operators and policymakers.
‘Best-in-class’ landfills exceed the commonly accepted best practices by implementing all the following practices :
- an anticipated capture system during the operating phase,
- prompt installation of the final cover and capture system, with use of an impermeable cover,
- operated as bioreactor, keeping optimal humidity,
- adequate maintenance and reporting,
- recovery of captured gas and
- treatment of residual methane emissions throughout the waste decomposition process.
The main finding is that switching from the actual mix of practices to ‘best in class’ practices would reduce by 21MtCO2eq (−36%) the emissions due to the degradation of waste landfilled between 2024 and 2035, compared to the ‘business-as-usual scenario’, while also providing a renewable energy source, bringing potential avoided emissions and energy sovereignty. The findings underscore that in addition to implementing the organics diversion and waste reduction targets of the EU, adopting ‘best-in class’ landfill practices has the potential to bolster energy recovery, mitigate emissions and stimulate biomethane production, thereby advancing the EU environmental goals.